\begin{tabbing} R{-}discrete\_compat($A$; $B$) \\[0ex]$\,\equiv$$_{\mbox{\scriptsize def}}$$\;\;$\=if\= Reffect?($A$)\+\+ \\[0ex]then \=if\= Reffect?($B$)\+\+ \\[0ex]then \=(Reffect{-}x($A$) = Reffect{-}x($B$) $\in$ Id)\+ \\[0ex]$\Rightarrow$ (Reffect{-}discrete($A$) = Reffect{-}discrete($B$) $\in$ $\mathbb{B}$) \-\-\\[0ex]if\= Rinit?($B$)\+ \\[0ex]then \=(Reffect{-}x($A$) = Rinit{-}x($B$) $\in$ Id)\+ \\[0ex]$\Rightarrow$ (Reffect{-}discrete($A$) = Rinit{-}discrete($B$) $\in$ $\mathbb{B}$) \-\-\\[0ex]else True \\[0ex]fi \-\-\\[0ex]if\= Rinit?($A$)\+ \\[0ex]then \=if\= Reffect?($B$)\+\+ \\[0ex]then \=(Rinit{-}x($A$) = Reffect{-}x($B$) $\in$ Id)\+ \\[0ex]$\Rightarrow$ (Rinit{-}discrete($A$) = Reffect{-}discrete($B$) $\in$ $\mathbb{B}$) \-\-\\[0ex]if\= Rinit?($B$)\+ \\[0ex]then \=(Rinit{-}x($A$) = Rinit{-}x($B$) $\in$ Id)\+ \\[0ex]$\Rightarrow$ (Rinit{-}discrete($A$) = Rinit{-}discrete($B$) $\in$ $\mathbb{B}$) \-\-\\[0ex]else True \\[0ex]fi \-\-\\[0ex]else True \\[0ex]fi \- \end{tabbing}